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Abstract

This paper reports Part I of a two part effort, that is

intended to delineate the relationship between reliabil-

ity and fault tolerant control in a quantitative manner.

Reliability analysis of fault-tolerant control systems is

performed using Markov models. Reliability properties

peculiar to fault-tolerant control syslems are empha-

sized. As a consequence, coverage of failures through

redundancy management can be severely limited. It is

shown that in the early life of a system composed of

highly reliable subsystems, the reliability of the overall

system is affine with respect to coverage, and inade-

quate coverage induces dominant single point failures.

The utility of some existing software tools for assessing

the reliability of fault tolerant control systems is also

discussed. Coverage modeling is attempted in Part II

in a way that captures its dependence on the control

performance and on the diagnostic resolution.

1 Introduction

Highly reliable systems make use of redundancy to

achieve fault tolerance, due to limited reliability of

components or subsystems [41. Utilization of analytic

redundancy [51 that provided by static and dynamic

relations among system variables, such as secondary

functions of effectors, virtual mea._urements, projec-

tions, etc. can further reduce the probability of exhaus-

tion of hardware in a cost-effective nmnner. Analytic

redundancy management of complex control systems,

however, involves considerable mow risks in compari-

son with such schemes as majority ,'oting, for decision

making is often based on residual signals formed by

the differences between noisy measurements and cal-

culated values of output variables based on inaccu-

rate models. Decision errors can lm associated with
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uncertailt.ies on whether there is a subsystem failure,

which :subsystem has failed, how severe is its effect.

whether it is necessary t.o take a drastic corrective

action. ,vhich action to take. In addition, the ques-

tion may also arise on whether there is adequate con-

trol rele,'ant redundancy [15] and authority to allow re-

covery f:'om the effect, the failure. The dynamic and

closed-icop nature, common to all control systems, is

the sour,:e for additional difficulties, such as temporary

mask of the effect, of subsystem failures, the vagueness

in the definition of a system level failure in the context

of control performance, and the sometime_ significant

proees_-ing requirement in supporting the redundancy

illallagelllent.

Defini/.ions suggested in [9] on fault and failure are

adopted with a slight extension. A fault, is an unpermit-

ted deviation of at least one characteristic property or

variable of the system. A failure is a permanent inter-

ruption, _f a system's ability to perform a required time-

tion un¢er specified operating conditions. Note that a

failure can also be defined in the subsystem level. A

fault, mt_y or nmy not lead to a failure. 'Without loss

of gener _lity, a subsystem failure is assumed to always

lead to _he system failure unless a successful manage-

ment of redundancy ensues. A system level failure is

declared when faults or subsystem failures cause the

control performance of the system to fall below the pre-

scribed threshold. The performance threshold can be

set at two (or more) different levels, each correspond-

ing t.o a specific reliability requirement. In aviation, for

example, one level can be set by" the ability to carry out

a normt:l mission (or mission abort in terms of failure

probability), and another can be set by the ability to

merely naintain the system stability needed for safe

landing (loss of control in terms of failure probability).

This pa.)er will treat different reliability requirements

in a unified manner.

Reliabilty is naturally a subjective concern in the

analysis and design of fault-tolerant control sys-

tems. Few publications that formally adderess this

issue[]0, I1, 131 have confined the scope of discussion

to reliability assessment for dynamic systems subject

to fault:_. Reliability is rarely regarded as an objective



criterionthatguidesacontrolsystemdesigninaninte-
gratedmanner.Thisl)redicmentisduetotiledifficulty
in establishinga flmctionallinkage1)_lweentile over-
all systemreliability,andtheperfolmancedefinedin
theconventionalsenseat thebotton,levelforcontrols
andfordiagnosis.Tileonlyattemptpriortothiswork
alongthisdirectionis reportedin [11]wheresucha
linkageisestablishedthroughcoverageunderthepos-
sibilisticformalization.Thepossibilisticformalization
providesflexibleandusuallymoreaccuratedescriptions
ofuncertainties,butsuffersfromlackofcorresponding
theoreticalandnumericalmeansforreliabilityanaly-
sis. Thispaperis intendedto address1.hereliability
issueof faulttolerantcontrolsystenL_in themorefa-
miliarprobabilisticformalizationsoIhatexistingtools
andmethodologiesofreliabilityanalysiscanbeapplied.
Thepaperisorganizedasfollows.Section2 presents
issuesencounteredin ourendeavorthrougha reliabil-
it.yanalysiscasestudyof afaulttolerantflightcontrol
system.Section3discussesnumericallechniquesfor
reliabilityassessmentoffault,toleranlsystemswithem-
phasisonhowcoverageentersreliabilityasadecision
risk factor.Severalapproximaterelationsarederived
to revealthedependenceof reliabilityto coveragein
simpleforms.

2 A CaseStudy

Tounderstandsomeofthereliabilityissuespeculiarto
faulttolerantcontrolsystems,westartwithareliability
assessmentcasestudyofa faulttolerantflightcontrol
system(FTFCS).A completerepor_on thiscasecan
befoundin [13].Observationsthat followshouldserve
to motivatea focusedeffortin coveragemodelingof
faulttolerantcontrolsystems.
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Fig.1 Effector functional dependency in a FTFCS

Fig. 1 shows the functional dependencies of subsystems

in the pitch/roll control effector block within a fault.

tolerant flight control system [13]. The diagram re-

fleets the available redundant lateral control author-

ities in ,he syst.em and the extent such redundancy

ks ut.ilizcd for subsystem failure recovery. Each effec-

tot channel contains an actuator subsystem which is

prece(te¢i by a group of three or four active identical

compuler/effex:tor interface subsystems, then followed

by a co, trol surface. Two of the effect.ors are consid-

ered as primary, and two as secondary. Every com-

puter/ef:ector interface subsystem bh)cks is of n-plex

archito:t are (group of n active identical subsystems).

Other blocks that precede the lateral-directional effec-

tor 1)h)cc but are not shown in the figure include a

computer power supply block, an I/O control module

block, a pilot, command sensor block, and an aircraft.

state sensor block. The block following this effector

block is a roll control effector block. Tile flmctional

dependency of tile fault tolerant flight control system

altogel h,_'r is described t)y a two-layer parallel-to-series

intercon ruction scheme.

The reli_tbility indicator used in the following discussion

is the plobability of loss of control denoted by PLOC.

Each small box in Fig. 1 represents a subsystem, where

,\x (X =: I, A, S) are the failure rates in t.erms of fail-

ures per hour. Under the assumption of low snbsystem

failure rates, short mission time, and highly rigorous

maintenance requirements, constant failure rates are

approl)r ate. Safety requirement for inner layer paral-

lel confi.guration (the n-plex comt)uter/effoctor inter-

face sul:system) considered is 1-out-of-u.. Safety ro

quirenmat for the outer layer parallel configuration is

3-out-of-4. This means that the three remaining effec-

tot channels nmst work in concert to accommodate a

failure in one effector channel.

The redandancy architecture shown in Fig.1 does not

truely reflect how effector channel hardware is config-
ured. It must be understood as an effective redun-

dancy configuration which assumes that any anomaly

in an effector channel serious enough to warrant a con-

trol ada-)tation or reconfiguration action for failure ac-

commo(_ation can do so promptly' and successfully. In

reality, mwever, due to uncertainties in the model of

the system to be controlled, uncertainties in the mod-

els of signals exerted on the system, and the limited

processiag capability, considerable risks exist in nmk-

ing a (hvision on a corrective action. These decision

risks nnst be taken into consideration in reliability as-

sessment. The risks encountered may include overly

slow or severe transients, false alarm, miss detection,

false i(h_ntifieation, false reconflguration, and lack or

exhaust!on of redundancy. The notion of coverage is

now" usot to account for such risks. It represents an at-

tempt to separate handling of failures from occurrence

of failures. Coverage defined in this context is highly

scenario dependent, highly time dependent, and most
of all, ,:l:tficult to estimate. Coverage has been used as

a paran:eter to reflect the ability of a system to auto-

matically recover from the occurrence of a fault during



a normalsystemoperation[6]:

Coverage =-- Probability(System recovers[Fault occurs).

Once a decision is nmde however, the process of remov-

ing a subsystem or reconfiguring the _ystem is generally

involved. This process, though fast ill comparison with

a failure process, still takes time, and has been shown t.o

be generally non-ext)onentially distributed. Including

this proce_ in a reliability model implies the creation

of a nmnerically stiff problem [4] .

Some results of reliability e_ssessmeat for the system

of Fig. 1 are now presented. All coverage values are

obtained based on test data [16], which aggregate the

effects of decision errors. Since these values are fixed.

they are called static coverage values A coverage value

of 0.99 is used when an actuator failure is accommo-

dated. The following table gives coverage of a com-

puter/effector interface subsystem failure.

ttedundancy nmnagement i intact sul_ystenm Coverage c4-i

Majority voting ,1 0.992

Majority Voting 3 0.99

Comparing 2 0.89

Self-monitoring 1 0.75
Table 1

Coverage associated with surface damage is left as a

variable whose required value is yet to be determined

for the reason that it is where improvement is nee<ted

most. A realistic estinmte of static coverage can be ob-

tainc_t by counting the number of un._uccessful surface

failure recoveries and taking the ratio with respect to

the total number of sinmlated surface impairment with

a full scale simulator. Note that such static coverage

values infer from a rather small sample of coverage data

to a general population, which do not address a spe-

cific process well, and therefore are inadequate for use

to make online decisions. Section 4 will discuss cover-

age modeling for more accurate coverage prediction.

The approximate parameter ranges in the Markov used

in our case study are now given. The overall system

reliability is required t.o achieve 1 - 10-7.

Subsystem failure rate Ax ]0- 6 _ 10-4 hour 1

Subsystem mean time to recover/zj ]0 .a _ 10-4 hours

Variance of time to recover _j i0 3 _ 10 4 hours
Mission time T i0 ° _ l0 j hours

Table 2

The above table reflects two comnlon characteristics

of highly reliable fault tolerant systen_s: details due

to small failure probabilities canno_ be arbitrarily ig-

nored, and recovery process is much faster than failure

process (107 times faster at least,). As a result, one

is faced with solving a numerically =_tiff problem. For-

tunately, successful attempts have been made to effec-

tively deal with the stiff problem boi h theoretically and

numerically[ 12, 41.

Under a set of given failure rates and mission time, the

following results are obtained for the effector block

Surface tidlure coverage Approximate Pcoc

100% 10 - l0

99% 10 _

85% 10 6
Table 3

Though I has been observed that use of analytic redun-

dancy c_n greatly increase the overall system reliabil-

ity (101 :o 10 4 times), imperfect coverage has clearly a

dominating effect on system reliability. It is found nu-

merically that PLOC decreases linearly with increasing

surfac(r _ alnage coverage up to an almost perfect cover-

age value. It is also found that reducing the redundancy

of the ,-omputer-effector interface from quadruplex to

triplex r, xtundancy slightly increases 1he overall syslcul

reliabilit v[13I.

These claims will be affirmed through analytical means

in the n¢xt section. The potential benefit of enhancing

coverage and the potential cost of additiolml hardware

redundalcy have now given us sufficient motivation to

investigate what factors affect coverage and in what

ways cm erage is affecte<l in a fault tolerant control sys-

tem.

3 Coverage in Reliability Assessment

In this :s_.ct ion, the development of reliability model and

the numerical technique used for obtaining the results

of the p'evious section are presented. Several general

results regarding the critical role of coverage in relia-

bility as,;essment are then derived. Coverage modeling,

calculation, and its role in relating fault tolerant con-

trol to reliability will be discussed in the next section.

Reliability modeling can be regarded as a process of

identifying the structure function of a system com-

prised o1" N subsystems with positive random lifetimes.

The structure function defines a mapping: {0, 1} "¥ ---*

{0, 1} [1] Reliability assessment can be regarded as a

process of evaluating the mapping, given state tran-

sition probabilities. A subsystem is in state "1" (in-

tact) before its lifetime and state "0" (failed) after its

lifetime. The fundamental assumption of a Markov

process is that the probability that. a system will un-

dergo a transition from one state to another state de-

pends only on the current state of the system and not

any pre,'ious states the system may have experienced.

A Markov process where all state transition rates are

time-invariant is said to be homogeneous.

Keeping in mind the case study of the previous section,

the folk.wing assumptions are used in the subsequent

development of reliability models

(a) all slbsystems are operational at. the onset;
At

(b) failure probability of any given subsystem is 1-e

where ,\ is the constant failure rate of that subsystem;

(c) a fai ure in any subsystem is independent of that in



allothersubsystemfailures;
(d) redundancymanagementrestor_.sthesystemop-
erationwitha certaincoverage following a subsysten_

failure;

{e) an uncovered subsystenl faihlre always leads to the

system failure (caused by decision errors, delays in re-

dundancy management, and the exhauslion of redun-

dancy as a special case);

(f) a covered subsystem failure obeys a recovery time

distribution with mean time p. and variance cr2 (caused

by transients following the removal of a failed subsys-

tem, or reconfiguration of control law};

(g) all rates of recovery are orders of magnitude faster

than rates of subsystem failures;

(h) a failed subsystem remains failed during a mission

(no repair).

In the following development, the parameter values

given in Table 2 are assmned. The calibration to a

particular time scale allows us to draw more useful con-

clusions for similar classes of applications. With the

framework set, we now demonstrate the role of cov-

erage through a progressively more complex reliability

model starting from the inner most layer of the two-

layer parallel-to-series interconnection scheme shown

in Fig.1. The rate diagram shown in Fig.2 represents

a system comprised of four computer-effector interface

subsystems with subscript "I" omitr,ed for simplicity.

This represents a structure of a well-studied k(1)-out-

of-n(4) system (any combination of k operating subsys-

tems out of n independent subsystems will guarantee

successful operation of the system [7 ), The complica-

tion here comes with the time varying recovery rates

and with the incomplete reconfigurm ion. Our main in-

terest lies with the role of coverage in the context of

fault tolerant control, and derive some relations that

4k'(1 "Cll)+ Xl(t_

Fig.2 Rate diagram of a 4-plex interconneetion

It is important to keep in mind thai corresponding to

each specific number of remaining intact subsystems,

there is a particular redundancy management scheme

with a specific failure coverage as shown in Table 1.
Until a correct decision is nmde on how this failure

is to be handled, which is captured in the conditional

probability which we call coverage, rcn loyal of the failed

subsystem or reconfiguration of the failed system will

not occur. The last redundancy management scheme

in Table 1 will not be needed for the moment, but will

enter the picture, when a second parallel layer is in

place. In Fig.2, states are denoted by circled two-digit

numbers State name i j, i > 0 indicates that there are

i intact _ ubsystems and j failed subsystems. Sul)script

0j always denotes an exit (death) state. The coefficient

in front ,)[ the transition rate ,\ represents the numl)er

of subsy.,_lems that can fail in that transition. A tran-

sition to a recoverext state is marked by transition rate

,\j(t), which, in terms of conditional transition time

distribution density function fj (t), ix given by

fj(t) f'A3(t) 1 ---_(t)' Fj(t) = fj(r)dr (1)

where j is the total number of faih_ subsystems at.
the time of the transitiou. Denote the mean time and

variance of this transition by #3 and aj, respectively.

Coverage associated with the transition out of the state

with j failed subsystems is denoted by cj. The values

of cj us('d for the system shown in Fig.2 are gix_n in

Table 2 of the previous section. Aggregating all exit

states in o one with failure probability pD(t), the state-

space dimension of the Markov model is reduced to

eight, t'rom the rate diagram, a system of ordinary

differential equations

J_,t)-::P(t)O(0, P(0) = [a 0000000] (2)

can be (: erived [8] , where

P(t) [_)40(t) pal(t) pa0(t) p2,(t) p'2o(t) p11(1) pro(t) pD(t)] ,

is the v, ctor of probabilities of holding at state i.j at time
t, and QI l) is the state transition rate matrix,

4X 04.X 0 0 0 o 0 i1 -3c0,

3,\ o,\l(t) ;_l(t) 0 0 °o 00 i1-3,\ 3,\c 1 o
2_ 1 j30 0 --2.N ,\2 ( t ) ,\2 (t) 0 0

000 000 000 002"\ -X 2"&c2--01_3(t) ,\30t ), [1 _2 ]2,\

o o o o o o ; J

Let ,b(r,t) denote the solution to dp_t(7, t ) =

P(7)rb{_,t), ep(_- _-) = I. The syst.em failure proba-

bility at. the end of mission time T is _ven by pD(T) =

Xt(t)_

(b)

Fig.3 (a) C/E interface with recovery times removed;

(b) Paths to ignored death states



Civenthelargedisparitybetween[ailui'erates(,\)and
recoveryrates(!./#a)asshownin T_,ble2, it ismean-
ingfulto examinetheconditionun,tcr whichthe re-
coverytimesin theMarkovmodel(all beeliminated.
Therationaleforthisintentlieswiththesimplification
to ahoniogeneousMarkovprocess.Supposethiselim-
inationis allowed,theMarkovmodelwill havebeen
simplifiedto thatdepictedinFig.3(a).Thesumofthe
probabilitiesof thedeathstatestha_.havebeenelimi-
natedasaresultof ignoringtherecoverytimeisnow
estimated.First a resultonanapI)roximatefailure
probabilityisgiven.

Theorem1. Assume (a) through (h) hold for a k-out-

ofn ._vstem. In addition, co < 1, and nAT << 1. Then

the system failure probability is dominated by

P/_(T) = ,,_T(1 - _0) (3)

if

(n 1),\_u[(1 -4- AT) n - 1] + _(1 -_ .\,/,)n _ (1 + nAT)'
1 co >>

(4)

wh e re

i,_max{#,,bt2,-.-, ,,u,__]}, ,ui--0, Vi>n--k (5)

In this case the approximation error Ipo(T) -pa(T) I

satisfies

with an approxinmtion error bounded by 6.0 x 10 s.

The ine(tuality and error bound in Theorem 1 becomes

more an, t more conservative as k becomes larger and

larger tllan 1, for more terms are added without bing

subtracl.xt in completing the binonfial forms. When

ci's are. ('loser to l, tighter bounds can be obtained by

consider:ng k,\ci as a fast rate relative to kA(i - ci).

The nexl result states tile condition on the elinfination

of the recovery times. This is equivalent to setting Pi =

0, Vi.

Theorem 2. Assume (a) through (h) hold for a k-out-

of-n sy.slem. In addition, co < 1, n,\T << 1. In addi-

tion, as,,ume p_(T) = nAT(1 - co) dora/hates pD(T).

Then the recovery times can be ignored in the system

failure pr<)babilit,y calculation with an error eo bounded

by

nAp[(l ÷AT)'_-I], p rnaz{p,,l,u,---,fin-l}, (7)

where/'.i = O, gi > n- k. In this case,

(n 1) ,u (1 + ,\T) n - 1 ,_XT< <.l
1 co >> ' _ n.\.u. (8)

n T t - n'.zx--_

The proof of Theorem 2 is similar t.o that of Theorem
1. In fact the above inequality is implied by (4). To

¢n:_r): see how easily this condition is satisfied, the right hand
iPr, lT ) VA_(T)I< ..... :(n-1. _,,:_+_r)" _]--_ _')"-O+-_r).----T----O _0_side is cMculated using again u = -1, k = 1, tt = 0.001,

(6) T = 1. and ,\ = 10 -4, which leads to 1-co >> 3x 10 -r.

A key" step to proving Theorem _ is t he application of

White's bounds [4] by which it is required that state

transitions be considered as separate transitions repre-

senting disjoint events of traversing f,aths to exit states.

The rest of the proof involves employing adjusting the

bounds using Binomial forms. Due to paper length

limit, proofs for all theorems are ondtted.

Essentially, Theorem 1 states that if Co is not suffi-

ciently close to i in the sense defined above, the failure

probability of the Markov process becomes linear with

respect AT, and to 1-co. Tim most important implica-
tion here is that in order to effectively' take advantage

of redundancy, it is crucial to have t tie highest possi-
ble coverage for the first failure that occurs in the sys-
tem. As will be shown in the next section, this can be

achieved only through integrated design of the entire

system. To gain a sense on how far c0 must be from
1 in order for the simple formula ro be valid, values

given in Table 2 are used. With n := t. k---- 1, T= 1,

#= 10 :_ and,\= 10-4

1 cO >> 5A#{(l +.\T) 4 1 + (I+.\T) 4 - (1 _4_T)] --000018

4.\T(1 -- 2.\T)

must be satisfied. Using CO = 0.992 from Table 1.

t - co = I - 0.992 = 0.008 >> 0.00018. The following

approximation on the system failure has been obtained

eO,(T) - a.2 × to

This is met if 1 - Co = 10 -5, or co = 0.99999. In con:-

parison ,vith the used value of Co = 0.992, the condition
for elimnating recovery time is well satisfied. There-
fore, whenever the failure probability is dominated by

nAT(1 --co), elimination of recovery time is permissi-
ble. In lhe case of the system of Fig.2, pD(T) has can

now be .expressed analytically as

4,\T_ < 1

VD(T) = P(0)cQsr!,._ -_ I(I+@_T)],,_ = 4,\r(1-c0) = pA(T).

We no,v proceed to demonstrate the solution proce-

dure for the more complex two-layer parallel-to-series

intereonnection scheme encountered in the case study

of Secti,)n 2. Since the achievable 1 - co in our ease

study satisfies the condition of (4), the effeetor block

failure probability can be approximated by, after the

application of (3) to both the inner and the outer lay-

ers of parallel interconnections

pD(T) "._ a[A, Tn(1-c_)+A.aT(1-eo A) q-AsT(1-c0s)], (9)

where it (= 1,2,3, or 4) is the redundancy level in

the conlputer/effector interface portion. This formula

holds when 1-%x >> AxT, X = I. A, S. In par-

ticular, improvement in coverage, ewm by a small per-

eentage (from .99 to .999, for example) could reduce

the system failure probability by an order of magni-

tude. On the other hand, the level of redundancy in

the interface portion in each effect or channel deserves

the comideration for optimization. The following table

summm ies the contribution of the first, term in (9) (the

interfac,_ portion) to system failure probability.



RedundancyManagementCoverag,_c_

4 Majority voting 0.992

3 Majority Voting 0.99

2 Comparing 0.89

1 Self-monitoring 0.75
Table 4

Effect on PD

4AT x 0.032
dAT x 0.030

4AT x 0.220

4AT x 0.25

The numbers in the last column are the products of

n and 1 - co/ for different redundancy level n. Since

co/ is a decreasing function of _7 as shown in the table,

it turns out that the minimum appears at. n = 3, i.e.,

the 3-plex interface architecture minimizes the system

failure probability.

Enhanced coverage has been shown t.,) be the key to en-

hanced system reliability. There are applications, such

as civil aviation, where system reliability requirement

is as stringent as, for example, l- l0 -'*. Given the lint-

itation of individual subsystem reliability, the analysis

of this section concludes that coverage of first subsys-

tem failures in such systems must be raised to a vahm

extremely close to 1 to avoid inducn,g dominant sin-

gle point failures. At this extremely high coverage,

the approxinmte formulae given in this section is no

longer accurate, and the use of an ,.qaborate and rig-

orous numerical tool such as _,VinSIllE becomes nee-

essary. (For the data given in Table 2, however, the

failure probability calculation result of the above ap-

proximate formula ks indistinguishatde from the upper

and the lower bounds given by" ASSIST citeASSIST and

SUREciteSURE.) High coverage, at | he same time, im-

poses extremely stringent requirement on redundancy

management. Such a requirement nmst be reflectext at

the bottom levels on the control and diagnostic perfor-

mance requirements, which will be die, cussed in part II

of the paper.

4 Conclusions

The main contributions of the paper are presented in

Theorems 1 and 2.

Theorem 1 states that when coverage is not sufficiently

high, the uncovered subsystem failqres dominate the

system failure, and the system failure probability in-

creases linearly with decreasing coverage values. This

can significantly undermine the benefit of using redun-

dancy. Therefore, every effort should be made t.o en-

hance coverage of first subsystem failures. Theorem

2 states that when the uncovere_t failures are domi-

nating, the recovery times can be ignored if they are

several orders of magnitude faster than the subsystem

failure times on average. In this ca.se, a numerically

stiff problem is avoided, and reliability analysis of a

complex system can be much simplified.

It is necessary to point out that the motivating force

of this work comes from the set goals of the on going

NASA/IAA avialion safety program [2]. Though the

nmin co lclusions drawn in this paper should hold for

ninny areas of applications, the reader is cautioned to

pay attention 1o the conditions stated upon which the

conelu.qons are drawn, especially when they are em-

ployed l.,) apt)lications of vastly different time scales.
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